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Abstract

A hybrid method that combines the finite element method (FEM)
and the boundary element method (BEM) is developed to analyze elec-
tromagnetic scattering from arbitrarily shaped material cylinders. By
this method, the material cylinder is first enclosed by a fictitious
boundary. Maxwell’s equations are then solved by FEM inside and by
BEM outside the boundary. Electromagnetic scattering from several
arbitrarily shaped material cylinders is computed and compared with
results obtained by other numerical techniques.

1. Introduction

The problem of electromagnetic scattering determination from an arbitrarily shaped material cylin-
der is considered in this paper. Electromagnetic scattering from an inhomogeneous material cylinder
can be determined by two basic approaches—an integral equation and a differential equation.

In the integral equation approach, a surface integral equation or a volume integral equation may be
used. In the surface integral equation formulation, conducting surfaces of a scatterer are replaced by
equivalent surface electric currents, whereas material surfaces are replaced by both equivalent surface
electric and magnetic currents. Coupled integral equations are then formed by application of appropriate
boundary conditions to the different field components that are produced by the equivalent currents.
These coupled integral equations are solved by the method of moments for the unknown equivalent cur-
rents. Arvas and Sarkar (ref. 1) have analyzed radar cross sections of various two-dimensional struc-
tures with the surface integral equation approach.

For a cylinder consisting of inhomogeneous material, the surface integral equation approach does
not correctly model the inhomogeneity of the material cylinder. In such cases the volume integral equa-
tion formulation is then used to accurately model the inhomogeneous material cylinder. In the volume
integral equation formulation, the material cylinder is divided into unit cells. These unit cells may be
rectangular bricks or tetrahedral shapes and are small enough so that the field intensity is nearly uniform
within each cell. The material cylinder is then assumed to be replaced by an equivalent polarization cur-
rent flowing in these unit cells. The coupled integral equations, which are formed by application of
appropriate boundary conditions to the field produced from the equivalent currents, are then solved by
the method of moments. Using the polarization current concept, Richmond (ref. 2) determined scattered
field patterns of dielectric cylinders of arbitrary cross-sectional shape. The equivalent current concept
has also been used by Sarkar and Arvas (ref. 3) and by Schaubert, Wilton, and Glisson (ref. 4) to ana-
lyze electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. However, the
method involves the solution of a fully dense matrix equation, which may require prohibitively large
computer memory and long computation time.

In the differential equation approach, the volume of the inhomogeneous scatterer is discretized, and
Maxwell’s equations in differential equation form are solved. Some advantages of the differential equa-
tion approach over the integral equation approach are: (1) a method more convenient for handling com-
plex inhomogeneous scatterers, (2) a method that results in sparse matrix equations, and (3) a method
better suited for closed-region problems. However, for open-region problems in electromagnetics, such
as radiation and scattering, the volume must be properly truncated with an artificial or fictitious bound-
ary with proper absorbing boundary conditions. The accuracy of results obtained with an artificial
boundary with absorbing boundary conditions depends upon boundary locations as well as the order of
the boundary conditions.

An alternative approach (known as the hybrid approach) presented in this paper retains the advan-
tages of both differential equation and integral equation approaches. The general procedure for a hybrid
technique requires that the scatterer be enclosed by an artificial boundary. Maxwell’s equations are then
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solved by a differential equation approach such as the finite element method (FEM) inside the artificial
boundary and by an integral equation approach in discretized form such as the boundary element
method (BEM) outside the artificial boundary. Although use of BEM on and outside the artificial
boundary results in a full dense matrix, convergence of an approximate solution to the exact solution is
guaranteed without a change in the location of the artificial boundary.

The remainder of the paper is organized as follows. Section 3 contains basic formulation of the
problem for FEM and BEM. Scattering amplitudes of a few sample problems are computed by the
present technique in section 4. Also in section 4, results obtained by the present method are compared
with those obtained by other analytical techniques. The paper is concluded in section 5 with comments
on the future scope and extension of the present work.

2. Symbols

(I, J)th element of FEM matrix foreth subdomain

a cylinder radius; triangle side length

[B] finite element matrix

b boundary circle radius; triangle base length

C fictitious boundary curve

[D] sparse matrix

DJp (J, p)th element of matrix [D]

E0 amplitude of incident electric field

Ez Z-axis component of total electric field

incident electric field vector

ejwt time convention

f frequency, Hz

fs E or H scattered far field

free-space Green’s function, where  represents appropriate argument

[G] square matrix of orderP × P

Gpq (p, q)th element of matrix [G]

[G]−1 inverse of matrix [G]

[H] square matrix of orderP × P

Hpq (p, q)th element of matrix [H]

Hankel function of first order and second kind

Hankel function of zero order and second kind

Hz Z-axis component of total magnetic field

H0 amplitude of incident magnetic field

incident magnetic field vector

I, J integers

equivalent electric current representing incident field

j imaginary number equal to

propagation constant in free space

m, n integers

AIJ
e

Ein

G .( ) .( )

H1
2( )

.( )

H0
2( )

.( )

H in

Jz
i

1–

k0
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unit normal vector of curveC drawn outward

unit normal vector of curveC drawn inward

P number of nodal points on curveC

p integer forpth nodal point

piecewise distribution alongη direction

q integer forqth nodal point

unit vector

testing function equivalent to

column matrix with nodal amplitudes of normal derivative on curveC

amplitude of normal derivative of  on curveC

expansion function forIth node overeth triangular subdomain

coordinates of three vertices of triangle

variables of rectangular coordinates

unit vector alongZ-axis

equal to  respectively, for TM case; equal to
respectively, for TE case

column matrix for nodal amplitude

column matrix for nodal amplitude on curveC

amplitude of  atI th node

length of linear segment betweenp andp + 1 nodes on curveC

length of linear segment betweenp andp − 1 nodes on curveC

Kronecker delta function

relative permittivity at (x, y)

permittivity of free space

η variable along linear segments of curveC

angle between two consecutive linear segments of curveC, deg

relative permeability at (x, y)

permeability of free space

variables of cylindrical coordinate system

source coordinate

radar scattering width

column matrix with nodal amplitudes of incident field on curveC

amplitude of incident field atqth node on curveC

incident angle of electromagnetic wave

n̂

n̂1

Qp η( )

r̂

T x y,( ) WI
e

U[ ]C

Up ψt

WI
e

x1 y1,( ),

x2 y2,( ),

x3 y3,( ) 





x y,( )

ẑ

αr x y,( ),

βr x y,( ) 



µr x y,( ), εr x y,( ), εr x y,( ), µr x y,( ),

Γ[ ]

Γ[ ]C

ΓI ψt

∆p

∆p 1–

δIJ

ε x y,( ) ε0εr x y,( )

εr x y,( )

ε0

Θp

µ x y,( ) µ0µr x y,( )

µr x y,( )

µ0

ρ φ,( )

ρ′ φ′,( )

σ2D

ϒ[ ]C

ϒq

φin
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incident electric or magnetic field scalar

total electric field  for TM case; total magnetic field  for TE case

angular frequency (2π f ), rad/sec

Abbreviations:

in incident

TE transverse electric

TM transverse magnetic

3. Theory

Consider a material cylinder infinite along theZ-axis and of arbitrary cross section as shown in fig-
ure 1. For the purpose of analysis, the scattering structure is divided into regions I and II by contourC.
Region II may consist in general of inhomogeneous material with permeabilityµ(x, y) and permittivity
ε(x, y). It may also have embedded metallic strips within the material. Region I is free space with perme-
ability µ0 and permittivityε0 surrounding the cylinder. An incident electromagnetic wave is assumed in
the direction normal to the axis of the cylinder. Both transverse electric (TE) and transverse magnetic
(TM) polarizations are considered, and  time convention is assumed.

For TM and TE incidence, respectively, the incident field is given by

(1)

where  is the amplitude,  is the incident angle, and  are the variables of the
cylindrical coordinate system. The total field  inside the region bounded by curveC can be deter-
mined from the solution of the source-free scalar wave equation given by

(2)

In equation (2) , , and  are equal to , , and , respectively, for TM
Z-axis excitation and are equal to , , and , respectively, for TE toZ-axis excitation.
Multiplication of both sides of equation (2) by a testing function  and integration over the cross
section of region II yields a weak form of the wave equation (Silvester and Ferrari, ref. 5) as

(3)

With the use of vector identity

(4)

and the divergence theorem, equation (3) can be written as

(5)

where  is a unit vector drawn outwardly to the curveC as shown in figure 1.

ψin

ψt Ez Hz

ω

ej ωt

Ein ẑψin ẑE0e
jk0ρ cos φ φin–( )

= =

H in ẑψin ẑH0e
jk0ρ cos φ φin–( )

= = 





E0 H0 1= = φin ρ φ,( )
ψt

∇ 1
αr x y,( )
-------------------∇ψt⋅ k0

2βr x y,( )ψt+ 0=

αr x y,( ) βr x y,( ) ψt µr x y,( ) εr x y,( ) Ez
εr x y,( ) µr x y,( ) Hz

T x y,( )

T ∇ 1
αr x y,( )
------------------- ψt∇ βr k0

2
x y,( )ψt+⋅

 
 
 

xd yd
Region II

∫∫ 0=

∇ T
1

αr x y,( )
------------------- ψt∇

 
 
 

⋅ T∇ 1
αr x y,( )
-------------------ψt∇ T∇ 1

αr x y,( )
-------------------ψt∇⋅+⋅=

T∇ 1
αr x y,( )
-------------------ψt∇ k0

2βr x y,( )T ψt–⋅
 
 
 

xd yd
Region II

∫∫ T∇ψt n̂ dc⋅
C
∫°=

n̂
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To construct an approximate solution of equation (5) by FEM, region II is approximated by a union
of triangles as shown in figure 2(a). On theeth triangle  is represented by a linear combination of
functions  as

(6)

where

and the Kronecker delta function is defined as  for  and  for . The ampli-
tudesΓ1, Γ2, andΓ3 are the unknown values ofψt at the three vertices of theeth triangle having coordi-
nates  and  respectively. By Galerkin’s method with  and
J = 1, 2, and 3, the left side of equation (5) over theeth triangle can be written as

(7)

The previous expression can be written in a matrix form as

(8)

where

(9)

Now consider a union of two triangles as shown in figure 2(b); an expression corresponding to
equation (8) for the union of two triangles can be written as

(10)

where  are determined from equation (9) with superscripte replaced by superscriptf and the integra-
tion performed over thef triangle. An appropriate alignment of common edges, as indicated in

ψt
WI

e
x y,( )

ψt
e ΓI WI

e
x y,( ) (on eth triangle)

I =1

3

∑=

ψt
e

0 (otherwise)=








WI
e

x y,( ) 1 x y[ ]
1 x1 y1

1 x2 y2

1 x3 y3

1–
δI 1

δI 2

δI 3

=

δIJ 0= I J≠ δIJ 1= I J=

x1 y1,( ), x2 y2,( ), x3 y3,( ), T x y,( ) WI
e

x y,( )=

ΓI WJ
e∇ 1

αr x y,( )
-------------------WI

e∇ k0
2

– βr x y,( )WJ
e
WI

e⋅
 
 
 

xd yd∫
e
∫

I =1

3

∑ J 1, 2, 3=( )

A11
e

A12
e

A13
e

A21
e

A22
e

A23
e

A31
e

A32
e

A33
e

Γ1

Γ2

Γ3

AIJ
e

WJ
e∇ 1

αr x y,( )
-------------------WI

e∇ − k0
2βr x y,( )WJ

e
WI

e⋅
 
 
 

xd yd∫
e
∫=

A11
e

A12
e

A13
e

0

A21
e

A22
e

A55
f

+( ) A23
e

A56
f

+( ) A54
f

A31
e

A32
e

A65
f

+( ) A33
e

A66
f

+( ) A64
f

0 A45
f

A46
f

0

Γ1

Γ2

Γ3

Γ4

AIJ
f
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figure2(b), is required to assure the correct combination of terms in the matrix equation (10). To ensure
continuity of fields across the common edge,Γ6 = Γ3 andΓ5 = Γ2 were enforced in the derivation of
equation (10). With an assembled mesh of all triangles over the surface bounded by curveC, the left
side of equation (5) can be written as

(11)

where the elements of the matrix [B] are obtained from  [Γ] is the column matrix with elements
given by the values ofψt at the vertices of triangular elements,m = 1, 2, 3, ...,N, n = 1, 2, 3, ...,N, and
N is the total number of nodes.

To evaluate the contour integration on the right side of equation (5), the normal derivative ofψt
over curveC is required. To determine the normal derivative ofψt on curveC, the following procedure
is used.

The boundary curveC is discretized into linear segments as shown in figure 3 and the normal deriv-
ative of the functionψt on the curve is written as

(12)

whereUp is the unknown amplitude atpth node on curveC. The function  varies linearly withη
over the segment as

(13)

The right side of equation (5) can therefore be written as

(14)

where the elements of matrix [D] are given by

(15)

The unknown amplitudeUp is determined as follows. The functionψt in region I is obtained by the
solution of the inhomogeneous wave equation

(16)

subject to essential and natural boundary conditions on curveC. These essential and natural boundary
conditions are the values of the function and its normal derivative on curveC. In equation (16),  is the
equivalent current source producing the incident field.

B[ ] Γ[ ]

Amn
e

,

ψt∇ n̂⋅ Up Qp η( )
p=1

P

∑=

Qp η( )

Qp η( ) η
∆p 1–
------------- 0 η ∆p 1–≤ ≤( )=

Qp η( )
∆p η ∆p 1––( )–

∆p
----------------------------------------- ∆p 1– η ∆p≤ ≤( )=









T ψt∇ n̂ dc⋅
C
∫° Up TQp η( )dη

C
∫°

p=1

P

∑ D[ ] U[ ]= =

DJp WJ
e
Qp η( )dη

C
∫°=

ψt∇2 k0
2ψt+ jωµ0Jz

i
–=

Jz
i
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To obtain a solution, multiply equation (16) by  whereG(.) is the free-space Green’s
function for a line source located at  and integrate over region I, which gives

(17)

From the scalar Green’s theorem

(18)

where the unit normal vector  is shown in figure 1. Equation (17) can then be written as

(19)

Because  and

 equation (19) can be written as

(20)

The free-space Green’s function used in the previous equations is given by

(21)

(22)

where  and  are the Hankel functions of the second kind of zero and first order, respec-
tively, and  is a unit vector along  The functionψt on the curve in figure 3 can now be repre-
sented by

(23)

where  is the unknown amplitude of  at thepth node on curveC. Substitution of equations (12)
and (21)–(23) into equation (20) yields

(24)

G ρ φ; ρ′ φ′,,( ),
ρ′ φ′,( ),

ψt∇2(
Region I

∫∫ k0
2ψt )G(.) dx yd+ jωµ0 Jz

i
G .( ) dx yd

Region I
∫∫–=

G .( ) ψt ψt G .( )∇2–∇2[ ] xd y G .( ) ψt∇ n̂1 dc⋅
C
∫° ψt G .( )∇ n̂1 dc•

C
∫°–=d

Region I
∫∫

n̂1

ψt G .( ) k0
2
G .( )+∇2[ ] xd yd∫

Region I
∫ jωµ0 Jz

i
G .( ) xd yd∫

Region I
∫–=

ψt G∇ n̂1 dc⋅
C
∫° ψt∇ n̂1G dc•

C
∫°–+

G .( ) k0
2
G .( )+∇2[ ] δ ρ ρ′–( )δ φ φ′–( )/ρ,–= jωµ Jz

i
G .( ) xd yd∫

Region I
∫ ψi ,=

n̂1 n̂,–=

ψt ρ φ,( ) ψi ρ φ,( ) ψt∇ n̂G .( )dη⋅
C
∫°– ψt G .( )∇ n̂ dη⋅

C
∫°+=

G .( ) 1
4 j
-----H0

2( )
k0 ρ ρ′– 

 =

G .( )∇ r̂
jk0

4
--------H1

2( )
k0 ρ ρ′– 

 =

H0
2( )

.( ) H1
2( )

.( )
r̂ ρ ρ′.–

ψt ΓpQp η( )
p=1

P

∑=

Γp ψt

Γqδqq ϒq

jk0

4
-------- Γp

p=1

P

∑ H1
2( )

k0 ρq ρ′– 
 Qp η( ) r̂ n̂⋅ ηd

C
∫+=

j
4
--- U p

p=1

P

∑ H0
2( )

k0 ρq ρ′– 
 Qp η( ) ηd

C
∫+
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where  is the value of incident field at theqth node on curveC. Equation (24) can be written in
matrix form as

(25)

where

(26)

and

(27)

The normal derivative ofψt is then obtained by solution of equation (25) for  in terms of  to
get

(28)

where  and  refer to unknown nodal amplitudes on curveC. With substitution of equa-
tion (28) into equation (14), the rightside of equation (5) reduces to

(29)

From equations (11) and (29), equation (5) can be written in matrix form as

(30)

and solved for  which also includes additional  terms. Then  is determined by substitu-
tion of  into equation (28). The scattered far field in the direction is then determined by the last
two terms of equation (24) with  and the asymptotic evaluations of the Hankel functions as

(31)

ϒq

H11 H12 … H1P

H21 H22 … H2P

HP1 HP2 … HPP

Γ1

Γ2

ΓP

ϒ1

ϒ2

ϒP

–

G11 G12 … G1P

G21 G22 … G2P

GP1 GP2 … GPP

U1

U2

UP

=...
...

...
...

...
...

...
...

...
...

...

H pq

jk0

4
--------– H1

2( )
k0 ρq ρ′– 

 Qp η( )n̂ r̂⋅ ηd
C
∫ δqq+=

Gpq
j
4
--- H0

2( )
k0

2 ρq ρ′– 
 Qp η( ) ηd

C
∫=

U[ ]C Γ[ ]C

U[ ]C G[ ] 1–
H[ ] Γ[ ]C G[ ] 1– ϒ[ ]C–=

U[ ]C Γ[ ]C

T ψt∇ n̂ dc⋅
C
∫° D[ ] G[ ] 1–

H[ ] Γ[ ]C D[ ] G[ ] 1– ϒ[ ]C–=

B[ ] Γ[ ] D[ ] G[ ] 1–
H[ ] Γ[ ]C– D[ ] G[ ] 1– ϒ[ ]C=

Γ[ ], Γ[ ]C U[ ]C
Γ[ ]C ϕ

ρq ρ=
ρ ∞→

f s

k0

4
----- 2 j

πk0ρ
------------ 

 1/2
e

jk0ρ–
Γp Qp η( )e

jk0ρ′ ϕ ϕ′–( )cos
ηd

C
∫

p=1

P

∑–=

j
4
--- 2 j

πk0ρ
------------ 

 1/2
e

jk0ρ–
U p

p=1

P

∑ Qp η( )e
jk0ρ' cos ϕ ϕ′–( )

ηd
C
∫+
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where  is a function ofη. For TM and TE incidence, respectively, the radar cross section is then
obtained from

(32)

4. Numerical Results

In this section, numerical results for the scattering width of various 2-D material cylinders are pre-
sented. To solve equation (30), the matrices  and  must be determined. Matrices

 and  are sparse matrices, and their elements are determined by equations (9) and (15), respec-
tively. Matrices  and  are dense matrices, and their elements are determined by equations (26)
and (27), respectively. Equations (26) and (27) are evaluated with the use of Gauss quadrature numeri-
cal integration. Whenp = q, the integration in equation (26) results in  where  is
the internal angle at theqth node shown in figure 3. The column matrix [Γ], which is obtained after the
solution of equation (30), is used in equation (28) to determine  From known [Γ] and
on curveC, the scattered far field, and hence, the scattering width are determined by equations (31)
and (32).

To validate the computer code, the bistatic scattering width of a perfectly conducting cylinder of
radius 1.0λ, when excitedby a TM-polarized plane wave, is calculated by the present formulation and
compared with the calculated results given in reference 1. (See fig. 4.) Results of the two calculation
methods are in good agreement. For calculations by the present method, the circular cylinder is assumed
to be enclosed by an artificial circle with radius equal to 1.2λ. The region enclosed by the artificial cir-
cle is analyzed by the finite element method, and the region outside the circle is analyzed by the bound-
ary element method. For the BEM the circle is divided into 76 points. Selection of the location of the
artificial boundary around the cylinder is arbitrary. For the conducting cylinder, when the location of the
artificial boundary coincides with the object boundary, the problem can be solved by the use of only
BEM. For validation of the FEM formulation, the location of the artificial boundary was selected at 1.2λ
radius to provide a minimum one-cell-thick FEM region. If the artificial boundary is moved farther
away from the object boundary, the computational area is unnecessarily increased. The circumference
of the artificial boundary was divided into 76 linear segments so that the length of each small segment
was less than 0.1λ. In figure 5 the bistatic scattering width of the circular cylinder, when excited by a
TE-polarized plane wave, is shown and compared with earlier published results. (See ref. 1.)

To check if dielectric and magnetic materials are properly handled by the present method, the
bistatic scattering width of a material-coated circular cylinder is calculated for both TE and TM excita-
tions and presented in figures 6–8 along with earlier published results. (See ref. 1.) Overall earlier
results and the present method results are in good agreement. For the results presented in figures 6–8,
the artificial circular boundary was taken at radiusb. The artificial boundary was divided into 90 seg-
ments. Any further increase in the discretization of the artificial boundaryC resulted in insignificant
changes in the results presented in figures 6–8.

In general, the artificial boundary curveC enclosing the cylindrical scattering structure may be of
any shape. To check this aspect, the bistatic scattering widths of cylinders with triangular cross sections,
as shown in figure 9(a), are considered. The triangular cylinders are enclosed by the following bound-
aries: (1) circular boundary (fig. 9(a)), (2) elliptical boundary (fig. 9(b)), (3) conformal boundary with

ρ′ ϕ′,( )

σ2D limit ρ ∞→ 2π ρ
f s

2

E0
2

-------------=

σ2D limit ρ ∞→ 2π ρ
f s

2

H0
2

-------------=











B[ ], D[ ], G[ ], H[ ]
B[ ] D[ ]

H[ ] G[ ]

Hqq Θq 2π( )⁄( ),= Θq

U[ ]C. U[ ]C
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blended corners (fig. 9(c)), and (4) conformal boundary with sharp corners (fig. 9(d)). The bistatic scat-
tering widths, which were obtained for the four examples, are shown in figure 10 for comparison with
earlier results published by Peterson and Castillo in reference 6. Results presented in figure 10 are in
good agreement with each other. The results presented in figure 9 show advantages from the artificial
boundary selected to be as close as possible to the outer boundary of the cylinder. This reduces the com-
putational surface and, hence, the number of unknowns. For the examples considered, the artificial
boundary selected in figure 9(d) is the optimum because it has the least number of unknowns when
compared with the artificial boundaries considered in figures 9(a)–9(c).

Other geometries and their results are shown in figures 11–13. The geometries that were considered
included the conducting strip shown in figure 11(a), the microstrip transmission line shown in
figure12(a), and the conducting cylinder of von Karman shape shown in figure 13(a). For the calcula-
tion of the scattering widths of a conducting strip, a microstrip transmission line, and a conducting cyl-
inder of von Karman shape, the artificial boundaries were selected to be elliptical enclosures of the outer
boundaries of the structures as shown in figures 11(a), 12(a), and 13(a), respectively. The scattering
widths of these structures calculated by the present method are presented along with earlier published
results (ref.1) in figures 11(b), 11(c), 12(b), and 13(b). The results of all geometries are in good
agreement.

5. Conclusion

A hybrid technique that combines the finite element method and boundary element method has been
used to determine backscattered fields from arbitrarily shaped material cylinders. Validity of the com-
puter code developed with the present hybrid technique has been demonstrated with various arbitrarily
shaped material cylinders. Although use of the boundary element method in the present hybrid tech-
nique leads to a partly sparse and partly dense matrix, the present method is guaranteed to converge irre-
spective of the shape of the terminating or artificial boundary enclosing the arbitrarily shaped material
cylinder. The present hybrid technique can be applied to study the transmission line characteristic of
cylindrical strip lines.

NASA Langley Research Center
Hampton, VA 23681-0001
February 26, 1996
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Figure 1.  Material cylindrical scatterer and related coordinate system.
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(a)  Typicaleth andf th triangles.

(b)  Geometry of union of two triangles.

Figure 2.  Region II discretized into triangular subdomains.
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Figure 3.  Geometry of discretized boundary curveC.
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Figure 4.  Bistatic scattering width of conducting circular cylinder excited by TM-polarized plane wave.
α = 1.0λ andφin = 180°.
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Figure 5.  Bistatic scattering width of conducting circular cylinder excited by TE-polarized plane wave.
α = 1.0λ andφin = 180°.
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Figure 6.  Bistatic scattering width of coated conducting circular cylinder excited by TM-polarized
plane wave.a = 1.0λ; b = 1.5λ; εr = 2.0; µr = 1.0; andφin = 180°.
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Figure 7.  Bistatic scattering width of coated conducting circular cylinder excited by TE-polarized plane
wave.a = 1.0λ; b = 1.5λ; εr = 2.0; µr = 1.0; andφin = 180°.
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Figure 8.  Bistatic scattering width of coated conducting circular cylinder excited by TE-polarized plane
wave.a = 1.0λ; b = 1.5λ; εr = 2.0; µr = 2.0; andφin = 180°.
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(a)  Artificial circular boundary with radius 1.2λ0.

Figure 9.  Isosceles triangular metallic cylinder witha = 1.85λ0 andb = 1.404λ0. FEM method is used
inside circular boundary and BEM method is used outside circular boundary.
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(b)  Artificial elliptical boundary with major axis 1.3λ0 and minor axis 1.1λ0.

Figure 9.  Continued.
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(c)  Artificial conformal boundary with blended corners 3 to 4 cells away from triangle.

Figure 9.  Continued.
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(d)  Artificial conformal boundary with sharp corners 1 to 3 cells away from triangle.

Figure 9.  Concluded.
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Figure 10.  Bistatic scattering cross section of isosceles triangular cylinder shown in figure 9 and
excited by TM-polarized plane wave with angle of incidenceφin = 180°. Computed boundaries as
shown in figure 9.
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(a)  Geometry and triangular mesh.

Figure 11.  Conducting strip (infinite alongZ-axis) with artificial elliptical boundary with major axis
1.3λ0 and minor axis 0.3λ0.
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(b)  Monostatic scattering width of conducting strip excited by TM-polarized plane wave.

Figure 11.  Continued.
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(c)  Monostatic scattering width of conducting strip excited by TE-polarized plane wave.

Figure 11.  Concluded.
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(a)  Geometry and triangular mesh.

Figure 12.  Microstrip transmission line with artificial elliptical boundary with major axis 0.6λ0 and
minor axis 0.3λ0.
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(b)  Monostatic scattering width of microstrip transmission line excited by TM-polarized plane wave.
W1 = 0.9λ0; W2 = 0.15λ0; t1 = 0.02λ0; t2 = 0.1λ0; andt3 = 0.05λ0.
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(a)  Geometry and triangular mesh.

Figure 13.  Conducting cylinder of von Karman shape with conformal artificial boundary.
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(b)  Monostatic scattering width of conducting cylinder of von Karman shape excited by TM-polarized
plane wave.L = 2.0λ0 andD = L/2.

Figure 13.  Concluded.
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